






## Efficient H-D Exchange of Aromatic Compounds in Near-Critical D<sub>2</sub>O Catalysed by a Polymer-Supported Sulphonic Acid

Carmen Boix and Martyn Poliakoff

School of Chemistry, University of Nottingham, University Park, Nottingham, UK, NG7 2RD http://www.nottingham.ac.uk/supercritical/

Received 12 March 1999; accepted 19 April 1999

## Abstract

Hydrogen atom exchange of aromatic compounds in neutral near-critical  $D_2O$  has been improved by using a polymer-supported sulphonic acid catalyst. Phenol, aniline, quinoline, and substituted aromatic hydrocarbons are selectively ring-perdeuterated in high yields with insignificant by-product formation at 325 °C for 24 h in  $D_2O/Deloxan$ . © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: polymer-supported catalyst / near-critical water / deuterium oxide / gromatic compounds

Acid catalyzed H-D exchange of aromatic and heteroaromatic substrates has been studied since the 1960s. <sup>1</sup> The most commonly employed catalysts are concentrated mineral acids and highly reactive Lewis acids, such as organoaluminium halides or fluorinated carboxylic acids. However, all those reagents suffer inconveniences and H-D exchange is still an active field of research. For example, current research on H-D/T exchange in aromatic compounds involves the use of polymer-supported sulphonic acids as catalysts<sup>2</sup> in D<sub>2</sub>O in near-critical or supercritical conditions. D<sub>2</sub>O at high temperature and pressures has demonstrated its potential for H-D exchange in organic compounds, displaying different reactivity and selectivity depending on the pH.

Neutral D<sub>2</sub>O induces only partial deuteration of activated aromatic compounds towards electrophilic substitition (*eg. ortho-para* deuteration of anilines and phenols),<sup>3,4</sup> being not efficient in the promotion of H-D exchange in weakly activated compounds like aromatic hydrocarbons. The addition of acid<sup>5,6</sup> (*eg.* DCl 2 %) or base<sup>7,8</sup> (*eg.* NaOD 2 %) catalyses the H-D exchange even in hydrocarbons and deactivated compounds like benzoic acid, producing the corresponding perdeuterated compounds. However, the high temperature-dilute acid procedure (HTDA) requires an acid resistant vessel<sup>9</sup> and the alkaline D<sub>2</sub>O procedure requires temperatures of 380-430 °C. The use of a polymer-supported acid catalyst for H-D exchange has many advantages, but so far only partial deuteration of activated aromatic compounds has been achieved.<sup>2</sup>

In this communication we report the efficient and selective ring-perdeuteration of a range of aromatic compounds using a polymer-supported sulphonic acid, Deloxan<sup>®</sup>, as a catalyst in near-critical  $D_2O$ . Several aromatic compounds (Table 1) were reacted in  $D_2O/Deloxan^{®}$  at 325 °C for 24 h.<sup>1</sup>

Aniline, phenol, quinoline and aromatic hydrocarbons were perlabelled on the aromatic ring under the reaction conditions. In a single reaction, D-incorporations > 90 % were achieved with no significant by-product formation (GC > 90 %) and excellent yields. The reaction is performed in a neutral medium with a non-deuterated polymeric catalyst which is easy to recover. Furthermore, no corrosion of the vessel was observed. Therefore, it is a procedure suitable for the preparation of aromatic substrates on a preparative scale.

D<sub>2</sub>O/Deloxan® does not induce H-D exchange in benzylic positions, providing different selectivity from HTDA<sup>5,6</sup> or alkaline D<sub>2</sub>O<sup>7,8</sup> procedures. Thus, D-incorporation in the benzylic position of ethylbenzene was less than 10 %, allowing the preparation of ethylbenzene-d<sub>5</sub> with selective perdeuteration of the aromatic ring. The procedure is not efficient for labelling strongly deactivated aromatic compounds; *p*-toluic acid and acetophenone gave only 10 % D-exchange on aromatic ring. Moreover, acetophenone was

<sup>&</sup>lt;sup>1</sup> In a general procedure, an aromatic compound (0.4 g; 13 %w), D₂O (3.0 ml) and Deloxan® (0.4 g) were heated in a high pressure and temperature stainless steel vessel (5.2 ml, internal volume) (see Ref <sup>10</sup> for a detailed description of the system). The reaction was performed under Ar (10 bar at 20 °C) and D₂O was degassed before use. Products were isolated after extraction (CH₂Cl₂ or diethyl ether) and analyzed by GC, NMR and MS. Deuterium content was determined by mass spectrometry at low ionizing voltage (15-20 e.v.). All samples that contained NH₂ and OH groups were back-exchanged in H₂O before analysis.

labelled on the CH<sub>3</sub> position (90 %) rather than the ring, exchange that also takes place in neutral D<sub>2</sub>O at 250 °C. 11

 $D_2O/Deloxan^{\circledast}$  is a milder reaction system than HTDA or alkaline  $D_2O$ . Thus, aniline was perdeuterated in  $D_2O/Deloxan^{\circledast}$  whilst it decomposed to phenol in HTDA due to protonation of amino group.  $D_2O/Deloxan^{\circledast}$  requires lower temperatures than alkaline  $D_2O$ , limiting the formation of oxidation products. In fact, the only substrate that underwent slight oxidation (< 5 %) under our reaction conditions was ethylbenzene. Furthermore, the thermal stability of  $Deloxan^{\circledast}$  in near-critical  $D_2O$  has improved the procedure carried out originally with other polysulphonic acids (e.g. Nafion) of limited thermostability (T < 200 °C).

Table 1. H-D exchange of aromatic compounds in D<sub>2</sub>O/Deloxan<sup>®</sup> at 325 °C for 24 h<sup>a</sup>

| Entry | Substrate                     | Productc,d,e                 | % H-D exchange   |
|-------|-------------------------------|------------------------------|------------------|
| 1     | phenol                        | phenol-d,                    | 90               |
| 2     | phenol (no cat.) $^{b}$       | phenol-d <sub>3</sub>        | o,p; 89; m: 16   |
| 3     | aniline                       | aniline-d <sub>7</sub>       | 81               |
| 4     | aniline (250 °C, 2h, no cat.) | aniline-d <sub>3</sub>       | o,p: 92; m: 1    |
| 5     | quinoline                     | quinoline-d <sub>7</sub>     | 76               |
| 6     | ethylbenzene                  | ethylbenzene-d₅              | ring: 95, Me: 9  |
| 7     | ethylbenzene (no cat.)        | ethylbenzene-d,              | ring: 22, Me: 1  |
| 8     | naphthalene                   | naphthalene-d <sub>8</sub>   | 91               |
| 9     | anthracene                    | anthracene-d <sub>10</sub>   | 94               |
| 10    | phenanthrene                  | phenanthrene-d <sub>10</sub> | 95               |
| 11    | pyrene                        | pyrene-d <sub>10</sub>       | 94               |
| 12    | fluorene                      | fluorene-d <sub>10</sub>     | 92               |
| 13    | acenaphthene                  | acenaphthene-d <sub>10</sub> | 86               |
| 14    | 4-toluic acid                 | 4-toluic acid-d₄             | ring: 58, Me: 8  |
| 15    | acetophenone                  | acetophenone-d <sub>3</sub>  | ring: 10, Me: 90 |

aReactions performed in a high T/p batch reactor.  ${}^b$ The same results were obtained in the reaction at 250 °C in: i)  $D_2O/Deloxan^{\oplus}$  for 24 h or ii)  $D_2O$  for 2h. cYields > 90%. dGC purity > 90%. eProduct recovery > 90%. fDetermined by mass spectrometry.

Finally, control experiments were performed to assess the effect of the catalyst and temperature. The reaction of phenol at 325 °C with no catalyst, or at 250 °C with catalyst, for 24 h promoted the H-exchange in *o,p*-positions only, with insignificant exchange of *m*-positions. Ethylbenzene similarly underwent insignificant D-H exchange after 24 h at 325 °C without catalyst.

As a corollary, phenol- $d_3$ , aniline- $d_3$  and quinoline- $d_1$  (o,p-D-exchange >90 %) were prepared in our batch reactor in neutral  $D_2O$  at 250 °C in only 2 h. This contrasts with previous reports<sup>3</sup> suggesting slower equilibration with phenol and aniline requiring 25 h to achieve partial D-incorporation in o,p-positions (< 55 %). This procedure can be also applicable to the selective tritiation of organic compounds.

## Acknowledgements

We thank EPSRC (Grant n° GR/K84929) and the European Union for a Marie Curie TMR Fellowship (Contract n° ERBFMICT 972064) for financial support, and Degussa for a gift of Deloxan<sup>®</sup>. We thank Dr. A. Kordikowski, Dr. S. K. Ross, Mr. M. Guyler, Mr. K. Stanley, Mr. D. S. Hooper and Mr. L. A. D. Hollingworth for their help and advice.

## References

- (1) Junk, T.; Catallo, W. J. Chem. Soc. Rev. 1997, 26, 401-406.
- (2) Brewer, J. R.; Jones, J. R.; Lawrie, K. W. M.; Saunders, D.; Simmonds, A. J. Labelled Compds. and Radiopharm. 1994, 34, 391-400.
- (3) Werstiuk, N. H.; Ju, C. Can. J. Chem. 1989, 67, 812-815.
- (4) Bryson, T. A.; Jennings, J. M.; Gibson, M., personal communication.
- (5) Werstiuk, N. H.; Kadai, T. Can. J. Chem. 1974, 52, 2169-2171.
- (6) Werstiuk, N. H.; Timmins, G. Can. J. Chem. 1981, 59, 3218-3219.
- (7) Yao, J.; Evilia, R. F. J. Am. Chem. Soc. 1994, 116, 11229-11233.
- (8) Junk, T.; Catallo, W. J. Tetrahedron Lett. 1996, 37, 3445-3448.
- (9) Buncel, E.; Jones, J. R. Isotopes in the Physical and Biomedical Sciences. Volume 1. Labelled Compounds (Part A); Elsevier: New York, 1987.
- (10) Boix, C., Poliakoff, M. Green Chemistry 1999, in press.
- (11) Kuhlmann, B.; Arnett, E. M.; Siskin, M. J. Org. Chem. 1994, 59, 5377-5380.